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1 Calculus on Rn

Consider f : Rn → R. We’ll write (x1, x2, . . . , xn) as x. Assume f is sufficiently differentiable (at
least in C2).

1.1 Stationary points

Definition. (Stationary point) A point a ∈ Rn is a stationary point of f if and only if
(∇f)(a) = 0

Taylor expand about such an a:

f(x) = f(a) +

n∑
i=1

(xi − ai)(∇if)(a) +
1

2

∑
i,j

(xi − ai)(xj − aj)Hij(a) +O(|x− a|3).

Since a is stationary point, the linear term is zero, hence the behaviour of f around a is determ-
ined by the Hessian.

Hij =
∂2f

∂xi∂xj
= Hji

We can assume wlog that a = 0 by a translation, so

f(x)− f(a) =
1

2
xiHijxj +O(|x|3).

Since Hij is symmetric, we can diagonalise H by a rotation matrix so xi = Rijx
′
j we choose R

so that H ′ = RHR = diag(λ1, λ2, . . . , λn). Since H is symmetric, λi ∈ R for all i. So the series
becomes

f(x)− f(a) =
1

2

n∑
i=1

λi(x
′
i)

2 +O(|x|3).

If λi > 0 for all i then f(x) > f(a) for small enough x so we get a local minimium.
If λi < 0 for all i then f(x) < f(a) for small enough x so we get a local maximium.
Otherwise if all non-zero we get a saddle point, and if some are zero then we get a degenerate
stationary point, so we need to look at the next term in the Taylor expansion to describe the
behaviour at the point.

If we’re working in R2 we can work with determinates and traces since detH = λ1λ2 and
tr(H) = λ1 + λ2 so

(i) If detH > 0, trH > 0 =⇒ local minimium.

(ii) If detH > 0, trH < 0 =⇒ local maximium.

(iii) If det < 0 we get a saddle point.

(iv) If det = 0 we’re in the degenerate case.

Remark. A local minimium is not a global minimium. There might be some other stationary
point which is the global minimium, the minimium may also occur on the boundary of the
domain or the function might be unbounded from below in the domain and not achieve a global
minimium. We can make the same statements for maximiums.
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Let’s see an example with the function f(x, y) = x3 + y3 − 3xy.

∇f = (3x2 − 3y, 3y2 − 3x)

So ∇f = 0 ⇐⇒ x2 = y and y2 = x. This gives the solutions (0, 0), (1, 1) only.

H =

(
6x −3
−3 6y

)
So

detH = 9(4xy − 1) and trH = 6(x+ y).

Hence our point (1, 1) is a local minimium and the point (0, 0) is a saddle point.
We can work out the eigenvectors of the point (0, 0) which are

λ1 = −3 e1 =

(
1
1

)
λ2 = 3 e2 =

(
1
−1

)
So it is a maximium along the line y = x and a minimium along the line y = −x.
For this example there does not exist a global minimium or maximium since f increases/decreases
without bound on the domain.

1.2 Convex functions

Definition. (Convex set) A set S is convex if and only if ∀x, y ∈ S and ∀t ∈ (0, 1) we
have that (1− t)x+ ty ∈ S.

Now we’ll define convexity for functions. Let f be a function domain with domain D(f) ⊆ Rn.
The graph of f is the surface z = f(x) in Rn+1 with coordinates (x, z). A chord of f is a line
section joining two points of its graph.

Definition. (Convex function) A function f : S → R is convex if
(i) S is a convex set
(ii) The graph of f lies below on or below all of its chords i.e we have that

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

for all t ∈ (0, 1) and for all x,y ∈ S.
We say that f is strictly convex if the condition in (ii) is strict when x ̸= y.

Remark. See that we require the property (i) to exists for property (ii) to be well-defined.

For strict convexity we replace the ≤ sign with the < sign.

Lemma. f is strictly concave if and only if f is strictly convex.

Proof. Trivial.
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1.3 First order conditions

Theorem. If f is differentiable f on a convex domain D(f), then f is convex if and only
if

f(y) ≥ f(x) + (y − x) · ∇f(x).

If f is convex and differentiable then any stationary point is a global minimium.

Remark. We have similiar statements for concave functions and global maximiums.

Proof. (Of the corollory) If a is a stationary point, then ∇a = 0 so taking x = a in the theorem
we get that

f(y) ≥ f(x) ∀y ∈ D(f)

hence x is a global minimium

Proof. (Of the theorem) Let’s first show the forward direction and let

h(t) = (1− t)f(x) + tf(y)− f((1− t)x+ ty).

Since f is differentiable we can take the derivative with respect to t. This gives that

h′(0) = −f(x) + f(y)− (y − x) · ∇f(x).

Now consider

h′(0) = lim
t→0

h(t)− h(0)

t
= lim

t→0

h(t)

t

and from our assumptions we have that h(t) is positive in (0, 1) so h′(0) ≥ 0 so we have the
statement in our theorem.
For the converse, we have that

f(x) ≥ f(z) + (x− z) · ∇f(z)

f(y) ≥ f(z) + (y − z) · ∇f(z)

which gives that

(1− t)f(x) + tf(y) ≥ f(z) + [(1− t)x+ ty − z] · ∇f(z)

Now if we choose
z = (1− t)x+ ty

we get the required result, which completes the proof.

We also have an alternative first order condition which is equivalent.

Claim. The previous theorem is also equivalent to the inequality

(y − x) · [∇f(y)−∇f(x)] ≥ 0 ∀x,y ∈ D(f).

For n = 1 the claim says that (y − x)(f ′(y)− f ′(x)) which implies that f ′(y) ≥ f ′(x) for y > x
i.e. that f ′(x) is increasing on the domain.
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Proof. Assuming that f(y) ≥ f(x)+ (y−x) · ∇f(x) and the same equation formed by replacing
y → x and x → y and adding the two equations we exactly get the equation required.
For the converse assume our claim. Now define z = (1− t)x+ ty.

f(y)− f(x) = [f(z)]
t=1
t=0 =

∫ 1

0

dt
d

dt
f(z)

=

∫ 1

0

dt(y − x) · ∇f(z)

f(y)− f(x)− (y − x) · ∇f(x) =

∫ 1

0

dt {(y − x) · [∇f(z)−∇f(x)]}

Replacing y → z and using our claim, we see that the integand is positive hence the LHS ≥ 0 so
we’ve proved our claim.

1.4 Second order conditions

Claim. If f ∈ C2 then the first order conditions are equivalent to all the eigenvalues of
the Hessian matrix being non-negative ∀x ∈ D(f).

Proof. Let’s assume the first order conditions, replacing y = x+ h so we get that

h · [∇f(x+ h−∇f(x)] ≥ 0.

Taylor expanding we get that

∇if(x+ h) = ∇if(x) + hjHij(x) + o(h2)

therefore
hihjHij + o(h3) ≥ 0

If H(x) had a negative eigenvalue λ with eigenvector e set h = he.

=⇒ λh2e2 + o(h3) ≥ 0

but the LHS is less than 0 for small enough h contradiction.

Now for the converse assume that n = 1. So H(x) = f ′′(x). Hence we have that f ′′(x) ≥ 0 for
all x.

0 ≥ sgn(y − x)

∫ y

x

f ′′(z)dz

= sgn(y − x)(f ′(y)− f ′(x))

= (y − x)(f ′(y)− f ′(x))

which is the first order condition. Hence we’ve proved both directions.

2 Legendre Transform
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Definition. (Legendre transform) The Legendre transform of a function f : D(f) → R
is defined as

f∗(p) = sup
x

[p · x− f(x)]

with the domain of f∗ being the subset of Rn where the suprenum exists.

Claim. f∗ is convex.

Proof. Let p,q ∈ D(f∗) and take t ∈ (0, 1). Then we need to show that

sup {[(1− t)p+ tq] · x− f(x)} = sup {(1− t)[p · x− f(x)] + t[q · x− f(x)]}
≤ (1− t) sup[p · x− f(x)] + t sup[q · x− f(x)]

So RHS finite =⇒ LHS finite =⇒ (1 − t)p + tq ∈ D(f∗). Hence we have that D(f∗) convex
and f∗((1− t)p+ tq) ≤ (1− t)f∗(p) + tf∗(q)

Claim. If f is a convex function, then Fp(x) = f(x)− p · x is also convex

Proof. Exercise.

Corollary. If f convex and differentiable then any stationary point of p · x − f(x) is a
global maximium occuring at x(p) found by solving ∇f(x) = p.

Legendre transform of f is then f∗(p) = p · x(p)− f(x(p))
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